Частные производные и дифференциалы. Лекция n21. полный дифференциал, частные производные и дифференциалы высших порядков Найти частные и полные дифференциалы

Частными производными функции в том случае, если они существуют не в одной точке, а на некотором множестве, являются функции, определенные на этом множестве. Эти функции могут быть непрерывными и в некоторых случаях также могут иметь частные производные в различных точках области определения.

Частные производные от этих функций называются частными производными второго порядка или вторыми частными производными.

Частные производные второго порядка разбиваются на две группы:

· вторые частные производные от по переменной;

· смешанные частные производные от по переменным и.

При последующем дифференцировании можно определить частные производные третьего порядка и т.д. Аналогичными рассуждениями определяются и записываются частные производные высших порядков.

Теорема. Если все входящие в вычисления частные производные, рассматриваемые как функции своих независимых переменных, непрерывны, то результат частного дифференцирования не зависит от последовательности дифференцирования.

Часто возникает потребность решения обратной задачи, которая состоит в определении того, является ли полным дифференциалом функции выражение вида, где непрерывные функции с непрерывными производными первого порядка.

Необходимое условие полного дифференциала можно сформулировать в виде теоремы, которую примем без доказательства.

Теорема. Для того, чтобы дифференциальное выражение являлось в области полным дифференциалом функции, определенной и дифференцируемой в этой области, необходимо, чтобы в этой области тождественно было выполнено условие для любой пары независимых переменных и.

Задача вычисления полного дифференциала второго порядка функции может быть решена следующим образом. Если выражение полного дифференциала также является дифференцируемым, то вторым полным дифференциалом (или полным дифференциалом второго порядка) можно считать выражение, полученное в результате применения операции дифференцирования к первому полному дифференциалу, т.е. . Аналитическое выражение для второго полного дифференциала имеет вид:

С учетом того, что смешанные производные не зависят от порядка дифференцирования, формулу можно сгруппировать и представить виде квадратичной формы:

Матрица квадратичной формы равна:

Пусть задана суперпозиция функций, определенной в и

Определенных в. При этом. Тогда, если и имеют непрерывные частные производные до второго порядка в точках и, то существует второй полный дифференциал сложной функции следующего вида:

Как видно, второй полный дифференциал не обладает свойством инвариантности формы. В выражение второго дифференциала сложной функции входят слагаемые вида, которые отсутствуют в формуле второго дифференциала простой функции.

Построение частных производных функции более высоких порядков можно продолжать, выполняя последовательное дифференцирование этой функции:

Где индексы принимают значения от до, т.е. производная порядка рассматривается, как частная производная первого порядка от производной порядка. Аналогично можно ввести и понятие полного дифференциала порядка функции, как полного дифференциала первого порядка от дифференциала порядка: .

В случае простой функции двух переменных формула для вычисления полного дифференциала порядка функции имеет вид

Применение оператора дифференцирования позволяет получить компактную и легко запоминающуюся форму записи для вычисления полного дифференциала порядка функции, аналогичную формуле бинома Ньютона. В двумерном случае она имеет вид.

Рассмотрим изменение функции при задании приращения только одному из ее аргументов – х i , и назовем его .

Определение 1.7. Частной производной функции по аргументу х i называется .

Обозначения: .

Таким образом, частная производная функции нескольких переменных определяется фактически как производная функции одной переменной – х i . Поэтому для нее справедливы все свойства производных, доказанные для функции одной переменной.

Замечание. При практическом вычислении частных производных пользуемся обычными правилами дифференцирования функции одной переменной, полагая аргумент, по которому ведется дифференцирование, переменным, а остальные аргументы – постоянными.

1. z = 2x ² + 3xy –12y ² + 5x – 4y +2,

2. z = x y ,

Геометрическая интерпретация частных производных функции двух переменных.

Рассмотрим уравнение поверхности z = f (x,y) и проведем плоскость х = const. Выберем на линии пересечения плоскости с поверхностью точку М (х,у) . Если задать аргументу у приращение Δу и рассмотреть точку Т на кривой с координатами (х, у+ Δу, z+ Δ y z ), то тангенс угла, образованного секущей МТ с положительным направлением оси Оу , будет равен . Переходя к пределу при , получим, что частная производная равна тангенсу угла, образованного касательной к полученной кривой в точке М с положительным направлением оси Оу. Соответственно частная производная равна тангенсу угла с осью Ох касательной к кривой, полученной в результате сечения поверхности z = f (x,y) плоскостью y = const.

Определение 2.1. Полным приращением функции u = f(x, y, z) называется

Определение 2.2. Если приращение функции u = f (x, y, z) в точке (x 0 , y 0 , z 0) можно представить в виде (2.3), (2.4), то функция называется дифференцируемой в этой точке, а выражение - главной линейной частью приращения или полным дифференциалом рассматриваемой функции.

Обозначения: du, df (x 0 , y 0 , z 0).

Так же, как в случае функции одной переменной, дифференциалами независимых переменных считаются их произвольные приращения, поэтому

Замечание 1. Итак, утверждение «функция дифференцируема» не равнозначно утверждению «функция имеет частные производные» - для дифференцируемости требуется еще и непрерывность этих производных в рассматриваемой точке.

4. Касательная плоскость и нормаль к поверхности. Геометрический смысл дифференциала.

Пусть функция z = f (x, y) является дифференцируемой в окрестности точки М (х 0 , у 0) . Тогда ее частные производные и являются угловыми коэффициентами касательных к линиям пересечения поверхности z = f (x, y) с плоскостями у = у 0 и х = х 0 , которые будут касательными и к самой поверхности z = f (x, y). Составим уравнение плоскости, проходящей через эти прямые. Направляющие векторы касательных имеют вид {1; 0; } и {0; 1; }, поэтому нормаль к плоскости можно представить в виде их векторного произведения: n = {- ,- , 1}. Следовательно, уравнение плоскости можно записать так:


где z 0 = .

Определение 4.1. Плоскость, определяемая уравнением (4.1), называется касательной плоскостью к графику функции z = f (x, y) в точке с координатами (х 0 , у 0 , z 0) .

Из формулы (2.3) для случая двух переменных следует, что приращение функции f в окрестности точки М можно представить в виде:

Следовательно, разность между аппликатами графика функции и касательной плоскости является бесконечно малой более высокого порядка, чем ρ, при ρ→ 0.

При этом дифференциал функции f имеет вид:

что соответствует приращению аппликаты касательной плоскости к графику функции . В этом состоит геометрический смысл дифференциала.

Определение 4.2. Ненулевой вектор, перпендикулярный касательной плоскости в точке М (х 0 , у 0) поверхности z = f (x, y) , называется нормалью к поверхности в этой точке.

В качестве нормали к рассматриваемой поверхности удобно принять вектор --n = { , ,-1}.

Практическая работа №2

«Дифференциал функции»

Цель занятия : Научиться решать примеры и задачи по данной теме.

Вопросы теории (исходный уровень):

1. Применение производных для исследования функций на экстремум.

2. Дифференциал функции, его геометрический и физический смысл.

3. Полный дифференциал функции многих переменных.

4. Состояние организма как функция многих переменных.

5. Приближенные вычисления.

6. Нахождение частных производных и полного дифференциала.

7. Примеры использования указанных понятий в фармакокинетике, микробиологии и др.

(самостоятельная подготовка)

1. ответить на вопросы по теме занятия;

2. решить примеры.

Примеры

Найти дифференциалы следующих функций:

1) 2) 3)
4) 5) 6)
7) 8) 9)
10) 11) 12)
13) 14) 15)
16) 17) 18)
19) 20)

Применение производных для исследования функций

Условие возрастания функции y = f(x)на отрезке [а, b]

Условие убывания функции y=f(x)на отрезке [а, b]

Условие максимума функции y=f(x)при x= а

f"(a)=0 и f"" (a)<0

Если при х=а производные f"(а) = 0 и f"(а) = 0, то необходи­мо исследовать f"(x)в окрестностях точки x = а. Функция у=f(х)при х=а имеет максимум, если при переходе через точку х= а производная f"(x)меняет знак с «+» на «-», в случае минимума - с « - » на «+» Если f"(x)не меняет знака при переходе через точку х = а,то в этой точке у функ­ции экстремума нет

Дифференциал функции.

Дифференциал независимой переменной равен ее приращению:

Дифференциал функции y=f(x)

Дифференциал суммы (разности) двух функций y=u±v

Дифференциал произведения двух функций у=uv

Дифференциал частного двух функций y=u/v

dy=(vdu-udv)/v 2

Приращение функции

Δy = f(x + Δx) - f(x) ≈ dy ≈ f"(x) Δx

где Δx: - приращение аргумента.

Приближенное вычисление значения функции:

f(x + Δx) ≈ f(x) + f"(x) Δx

Применениедифференциала в приближенных вычислениях

Дифференциал применяется для вычисления абсолютной и отно­сительной погрешностей при косвенных измерениях u = f(x, у, z .). Абсолютная погрешность результата измерения

du≈Δu≈|du/dx|Δx+|du/dy|Δy+|du/dz|Δz+…

Относительная погрешность результата измерения

du/u≈Δu/u≈(|du/dx|Δx+|du/dy|Δy+|du/dz|Δz+…)/u

ДИФФЕРЕНЦИАЛ ФУНКЦИИ.

Дифференциал функции как главная часть приращения функци и. С понятием производной тесно связано понятие дифференциала функции. Пусть функция f(x) непрерывна при данных значениях х и имеет производную

Df/Dx = f¢(x) + a(Dx) , откуда приращение функции Df = f¢(x)Dx + a(Dx)Dx, где a(Dх) ® 0 при Dх ® 0 . Определим порядок бесконечно малой f¢(x)Dx Dх. :

Следовательно, бесконечно малые f¢(x)Dx и Dx имеют одинаковый порядок малости, то есть f¢(x)Dx = O.

Определим порядок бесконечно малой a(Dх)Dх по отношению к бесконечно малой :

Следовательно, бесконечно малая a(Dх)Dх имеет более высокий порядок малости по сравнению с бесконечно малой , то есть a(Dх)Dх = о.

Таким образом, бесконечно малое приращение Df дифференцируемой функции может быть представлено в виде двух слагаемых: бесконечно малой f¢(x)Dx одинакового порядка малости с и бесконечно малой a(Dх)Dх более высокого порядка малости по сравнению с бесконечно малой Dх. Это означает, что в равенстве Df=f¢(x)Dx + a(Dx)Dx при Dх® 0 второе слагаемое стремится к нулю «быстрее», чем первое, то есть a(Dх)Dх = о.

Первое слагаемое f¢(x)Dx, линейное относительно , называют дифференциалом функции f(x) в точке х и обозначают dy или df (читается «дэ игрек» или «дэ эф»). Итак,

dy = df = f¢(x)Dx.

Аналитический смысл дифференциала заключается в том, что дифференциал функции есть главная часть приращения функции Df , линейная относительно приращения аргумента Dx . Дифференциал функции отличается от приращения функции на бесконечно малую более высокого порядка малости, чем Dx . Действительно, Df=f¢(x)Dx + a(Dx)Dx или Df = df + a(Dx)Dx. Дифференциал аргумента dx равен его приращению Dx: dx=Dx.

Пример. Вычислить значение дифференциала функции f(x) = x 3 + 2x, когда х изменяется от 1 до 1,1.

Решение. Найдем общее выражение для дифференциала этой функции:

Подставляя значения dx=Dx=1,1–1= 0,1 и x = 1 в последнюю формулу, получим искомое значение дифференциала: df ½ x=1; = 0,5.

ЧАСТНЫЕ ПРОИЗВОДНЫЕ И ДИФФЕРЕНЦИАЛЫ.

Частные производные первого порядка . Частной производной первого порядкафункции z = f(x,y) по аргументу х в рассматриваемой точке (х; у) называется предел

если он существует.

Частная производная функции z = f(x, y) по аргументу х обозначается одним из следующих символов:

Аналогично частная производная по у обозначается и определяется формулой:

Так как частная производная – это обычная производная функции одного аргумента, то ее нетрудно вычислить. Для этого нужно пользоваться всеми рассмотренными до сих пор правилами дифференцирования, учитывая в каждом случае, какой из аргументов принимается за «постоянное число», а какой служит «переменной дифференцирования».

Замечание. Для нахождения частной производной, например по аргументу х – df/dx , достаточно найти обыкновенную производную функции f(x,y), считая последнюю функцией одного аргумента х , а у – постоянной; для нахождения df/dy – наоборот.

Пример. Найти значения частных производных от функции f(x,y) = 2x 2 + y 2 в точке Р(1;2).

Решение. Считая f(x,y) функцией одного аргумента х и пользуясь правилами дифференцирования, находим

В точке Р(1;2) значение производной

Считая f(x;y) функцией одного аргумента у, находим

В точке Р(1;2) значение производной

ЗАДАНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТА:

Найдите дифференциалы следующих функций:

Решить следующие задачи:

1. На сколько уменьшится площадь квадрата со стороной х=10см, если сторону уменьшить на 0,01 см?

2. Дано уравнение движения тела: y=t 3 /2+2t 2 , где s – выражено в метрах, t-в секундах. Найти путь s, пройденный телом за t=1,92 с от начала движения.

ЛИТЕРАТУРА

1. Лобоцкая Н.Л. Основы высшей математики - М.: «Вышэйшая школа», 1978.C198-226.

2. Бейли Н. Математика в биологии и медицине. Пер. с англ. М.: «Мир», 1970.

3. Ремизов А.Н., Исакова Н.Х., Максина Л.Г. Сборник задач по медицинской и биологической физике – М.: «Высшая школа», 1987. С16-20.

Для упрощения записи и изложения материала ограничимся случаем функций двух переменных. Все дальнейшее справедливо также для функций любого числа переменных.

Определение. Частной производной функции z = f (х, у ) по независимой переменной х называется производная

вычисленная при постоянном у .

Аналогично определяется частная производная по переменной у .

Для частных производных справедливы обычные правила и формулы дифференцирования.

Определение. Произведение частной производной на приращение аргумента х ( y) называется частным дифференциалом по переменной х (у ) функции двух переменных z = f (x, y ) (обозначения: ):

Если под дифференциалом независимой переменной dx (dy ) понимать приращение х (у ), то

Для функции z = f (x, y ) выясним геометрический смысл ее частотных производных и .

Рассмотрим точку , точку P 0 (х 0 , y 0 , z 0) на поверхности z = f (x , у ) и кривую L , которая получится при сечении поверхности плоскостью у = у 0 . Эту кривую можно рассматривать как график функции одной переменной z = f (x, y ) в плоскости у = у 0 . Если провести в точке Р 0 (х 0 , у 0 , z 0) касательную к кривой L , то, согласно геометрическому смыслу производной функции одной переменной , где a угол, образованный касательной с положительным направлением оси Ох .


Или: аналогично зафиксируем другую переменную, т.е. проведем сечение поверхности z = f (x, y ) плоскостью х = х 0 . Тогда функцию

z = f (x 0 , y ) можно рассмотреть как функцию одной переменной у :

где b – угол, образованный касательной в точке М 0 (х 0 , у 0) с положительным направлением оси Oy (рис. 1.2).

Рис. 1.2. Иллюстрация геометрического смысла частных производных

Пример 1.6. Дана функция z = х 2 3ху – 4у 2 – х + 2у + 1. Найти и .

Решение. Рассматривая у как постоянную величину, получим

Считая х постоянной, находим

Линеаризация функции. Касательная плоскость и нормаль к поверхности.

Производные и дифференциалы высших порядков.

1. Частные производные ФНП *)

Рассмотрим функцию и = f (P), РÎDÌR n или, что то же самое,

и = f (х 1 , х 2 , ..., х п ).

Зафиксируем значения переменных х 2 , ..., х п , а переменной х 1 дадим приращение Dх 1 . Тогда функция и получит приращение , определяемое равенством

= f (х 1 +Dх 1 , х 2 , ..., х п ) – f (х 1 , х 2 , ..., х п ).

Это приращение называют частным приращением функции и по переменной х 1 .

Определение 7.1. Частной производной функции и = f (х 1 , х 2 , ..., х п ) по переменной х 1 называется предел отношения частного приращения функции к приращению аргумента Dх 1 при Dх 1 ® 0 (если этот предел существует).

Обозначается частная производная по х 1 символами

Таким образом, по определению

Аналогично определяются частные производные по остальным переменным х 2 , ..., х п . Из определения видно, что частная производная функции по переменной х i – это обычная производная функции одной переменной х i , когда остальные переменные считаются константами. Поэтому все ранее изученные правила и формулы дифференцирования могут быть использованы для отыскания производной функции нескольких переменных.

Например, для функции u = x 3 + 3xy z 2 имеем

Таким образом, если функция нескольких переменных задана явно, то вопросы существования и отыскания ее частных производных сводятся к соответствующим вопросам относительно функции одной переменной – той, по которой необходимо определить производную.

Рассмотрим неявно заданную функцию. Пусть уравнение F(x , y ) = 0 определяет неявную функцию одной переменной х . Справедлива

Теорема 7.1.

Пусть F(x 0 , y 0) = 0 и функции F(x , y ), F¢ х (x , y ), F¢ у (x , y ) непрерывны в некоторой окрестности точки (х 0 , у 0), причем F¢ у (x 0 , y 0) ¹ 0. Тогда функция у , заданная неявно уравнением F(x , y ) = 0, имеет в точке (x 0 , y 0) производную, которая равна

.

Если условия теоремы выполняются в любой точке области DÌ R 2 , то в каждой точке этой области .

Например, для функции х 3 –2у 4 + ух + 1 = 0 находим

Пусть теперь уравнение F(x , y , z ) = 0 определяет неявную функцию двух переменных. Найдем и . Так как вычисление производной по х производится при фиксированном (постоянном) у , то в этих условиях равенство F(x , y =const, z ) = 0 определяет z как функцию одной переменной х и согласно теореме 7.1 получим

.

Аналогично .

Таким образом, для функции двух переменных, заданной неявно уравнением , частные производные находят по формулам: ,

mob_info