Какого вида осаждения частиц не существует. Материальный расчет процесса. АБсорбция. Определение. Область применения

Осаждение применяется для грубого разделения суспензий под действием сил тяжести. Этот процесс проводится в аппаратах, называемых отстойниками. Для расчета отстойников необходимо рассчитать скорость осаждения, т.е. скорость движения твердых частиц в жидкости.

Для вывода формул расчета скорости осаждения рассмотрим движение твердой частицы шарообразной формы в неподвижной жидкости под действием сил тяжести. Если частица осаждается под действием сил тяжести, то скорость ее движения в жидкости сначала возрастает из-за ускорения свободного падения. Одновременно с увеличением скорости частицы будет расти сопротивление среды ее движению, поэтому ускорение частицы будет уменьшаться и через некоторое время станет равным нулю. При этом наступает равновесие действующих на частицу сил, и она будет двигаться равномерно с постоянной скоростью, которая и является скоростью осаждения.

Рассмотрим силы, действующие на осаждающуюся частицу в жидкости (рисунок 4.3).

По второму закону Ньютона


Рисунок 4.3 – Силы, действующие на частицу при ее движении в вязкой среде:

– сила тяжести;

– сила Архимеда (подъемная);

– сила сопротивления среды;

Мы рассматриваем мелкие частицы. Они очень быстро начинают двигаться равномерно с постоянной скоростью. Поэтому можно принять, что , т.е. разгона частиц почти нет или им пренебрегают ()

. (4.4)

, (4.5)

, (4.6)

где – диаметр частицы; индекс « » – частица, « » – жидкость.

. (4.7)

, (4.8)

где (дзета) – коэффициент сопротивления;

– динамический напор или кинетическая энергия

омывания единицы объема;

– проекция частицы на плоскость, перпендикулярную направлению ее

движения. Т.к. частица – шар, то – площадь ее поперечного сечения.

Определение скорости осаждения. Подставим выражения (4.7) и (4.8) в (4.4)

. (4.9)

, отсюда (4.10)

. (4.11)

Для того, чтобы рассчитать по формуле (4.11) скорость осаждения необходимо знать величину . Коэффициент сопротивления зависит от режима обтекания частицы жидкостью. В логарифмических координатах зависимость от имеет вид, представленный на рисунке 4.4. Расчет скорости по уравнению (4.11) проводят только методом последовательного приближения в следующем порядке:

1. задаются режимом осаждения;

2. подставляют в формулу (4.10) соответствующее режиму выражение вместо ;

3. из полученного уравнения рассчитывают скорость осаждения;

4. по скорости определяют значение критерия Рейнольдса и режим осаждения;

5. если режим получился другой, то заново пересчитывают скорость.


Рисунок 4.4 – Вид зависимости коэффициента сопротивления от критерия Рейнольдса для различных режимов осаждения частицы (в логарифмических координатах).

Рассмотренный выше метод расчета скорости осаждения не очень удобен и длителен. Поэтому для удобства использования в расчетной практике Лященко предложил другой метод. По этому методу скорость выражается из критерия Рейнольдса, возводится в квадрат и подставляется в уравнении (4.10) ().

,

, (4.13)

Примем за критерий Архимеда выражение

, (4.14)

Физический смысл критерия Архимеда заключается в том, что он учитывает соотношение сил тяжести, вязкости и силы Архимеда.

Получим критериальное уравнение для расчета скорости осаждения:

(4.15)

Порядок расчета скорости осаждения по методу Лященко.

1. Рассчитываем значение критерия Архимеда по выражению (4.14).

2. По определяем режим осаждения и выбираем формулу для расчета коэффициента сопротивления . Это возможно, так как согласно критериальному уравнению (4.15) между и есть однозначное соответствие. Но критерий Архимеда, в отличие от , не зависит от скорости осаждения, а определяется только геометрическими размерами частицы и свойствами материала частицы жидкой среды.

Ламинарный режим движения

При ламинарном движении, наблюдающемся при небольших скоростях и малых размерах тел или при высокой вязкости среды, тело окружено пограничным слоем жидкости и плавно обтекается потоком (рисунок 4.5 ). Потеря энергии в таких условиях связана в основном лишь с преодолением сопротивления трения. Критерий Рейнольдса .


Рисунок 4.5 – Движение частицы в жидкой среде при различных режимах: ламинарном (), переходном () и турбулентном ().

Для ламинарного

; ; при .

Таким образом, если < 2, то < 36 - ламинарный режим осаждения (обтекания частицы).

Переходный режим движения

С увеличением скорости движения тела все большую роль начинают играть силы инерции. Под действием этих сил пограничный слой отрывается от поверхности тела, что приводит к понижению давления за движущимся телом в непосредственной близости от него и к образованию беспорядочных местных завихрений в данном пространстве (рисунок 4.5 ). При этом разность давлений жидкости на переднюю (лобовую) поверхность тела, встречающую обтекающий поток, и на его заднюю (кормовую) поверхность все больше превышает разность давлений, возникающую при ламинарном обтекании тела.

Для переходного режима осаждения , подставим в выражение (4.15)

; при .

Область ламинарного режима осаждения характеризуется следующими значениями параметра Рейнольдса:

Соответственно коэффициент гидравлического сопротивления среды движению капли при этом режиме равен

Из (3.4), с учетом (3.24), следует

Используя граничные значения критерия Рейнольдса, из (3.23) по (3.25) легко рассчитать граничные значения критерия Архимеда в области ламинарного режима осаждения капель

В области переходного режима осаждения

а коэффициент гидравлического сопротивления среды осаждению капли определяют по формуле Аллена

Из (3.4), с учетом (3.28), для критерия Рейнольдса получается

По аналогии с выводом (3.26) из (3.29), с учетом граничных значений критерия Re (3.27), следует, что соответствующие граничные значения критерия Архимеда в области переходного режима осаждения капель будут

т. к. критерий Рейнольдса

при известном диаметре частицы и значении Re (3.31)

Таким образом, в области ламинарного режима скорость осаждения частицы равна

в области переходного режима осаждения -

Итак, для расчета скорости свободного осаждения капель при известном их диаметре вначале рассчитывают критерий Архимеда

Решение. Пусть капля воды диаметром 20 мкм. По (3.35) определяют критерий Архимеда


Так как, то по (3.33) рассчитывают скорость свободного осаждения капель воды диаметром 20 мкм нефти

Варианты заданий и результаты аналогичных расчетов для других размеров капель воды, осаждающихся в нефти, даны в Прил. 25.

Решение. Исследованиями установлено, что при объемном содержании дисперсной фазы более 5 % необходимо учитывать стесненность осаждения (всплытия) капель.

По (3.20) для условий примеров 3.2 и 3.3 получим

Значения берут из решения примера 3.2, а комплекса - из примера 3.1. Например, пусть диаметр капли воды равен 50 мкм, скорость ее свободного осаждения равна 45,9 см/ч, а параметр равен при 50 %-й обводненности 0,0385, следовательно

т. е. скорость стесненного осаждения при 50 %-й обводненности эмульсии в 26 раз меньше скорости свободного осаждения капель.

Скорости стесненного осаждения капель воды для других размеров капель и ряда обводненности даны в Прил. 26.

Пример 3.4. Рассчитать динамику обводненности полидисперсной эмульсии по высоте отстойника периодического действия, если в ней содержатся капли воды следующих размеров: 3, 4, 5, 10, 20, 30, 40, 50, 60, 80, 100, 200 мкм с относительным числом их в эмульсии соответственно 5, 15, 20, 18, 15, 8, 5, 3, 3, 2, 2, 4.

Решение. Допустим, что распределение капель воды в нефти после заполнения отстойника равномерно. Следовательно, обводненность эмульсии в любом сечении ее одинакова и равна исходной обводненности В. Относительная скорость стесненного осаждения частиц воды диаметром в соответствии с (3.20) равна

Зависимость суммарного объема от относительного размера капель воды в эмульсии хорошо аппроксимируется уравнением

где dmax - максимальный размер капли.

В выделенном объеме эмульсии содержание воды составляет

где n - число капель воды в эмульсии (для нашей задачи n=100);

Vв - объем воды в эмульсии.

Аналогично

где - объем воды во всех тех, каплях, размеры которых меньше или равны, т. е.

По определению обводненность эмульсии есть отношение

Аналогично для обводненности в слое эмульсии

Подставляя (3.42) и (3.43) в (3.37), с учетом (3.38) и (3.39), получают следующее равенство:

Подставляя (3.45) в (3.36) и преобразовывая, имеют

Таким образом, по (3.46), в отличие от (3.36), определяют относительную скорость осаждения капель воды в слое эмульсии с обводненностью, которая меньше начальной обводненности эмульсии вследствие опережающего движения капель размером больше. Следовательно, по (3.46) можно рассчитать спектр скоростей стесненного осаждения капель воды с учетом изменения обводненности эмульсии по высоте отстойника.

На момент времени после начала гравитационного расслоения эмульсии нижняя граница слоя эмульсии, содержащей капли размером и меньше, может быть найдена по формуле

Если общая высота эмульсии в емкости h, то относительная высота очищенного слоя эмульсии, содержащего капли размером и меньше, будет равна

Динамику послойной обводненности эмульсии в результате гравитационного разделения рассчитывают по (3.45).

При В=0,2; =20 мкм и

т. е. обводненность слоя эмульсии, в котором остались только капли диаметром 20 мкм и меньше, равна 0,13 %.

Для диаметров капель воды 10, 20, 30, 40, 50, 60, 80, 100, 200 мкм в результате аналогичных расчетов для обводненности соответствующих слоев эмульсии получаются следующими: 0,03; 0,13; 0,28; 0,50; 0,79; 1,14; 2,04; 3,24; 20 %.

Пример 3.5. Исследовать влияние обводненности эмульсии на относительную скорость стесненного осаждения капель воды.

Решение. Формула (3.46) выведена из условия опережающего движения капель воды по отношению к каплям меньшего диаметра. Соответственно капли меньшего диаметра оседают в слое эмульсии меньшей обводненности и, как следствие, увеличивают скорость осаждения. Формула (3.46) учитывает послойное изменение обводненности эмульсии вследствие опережающего движения крупных капель, если зависимость суммарного объема капель воды от их относительного размера аппроксимируется уравнением (3.37).

Допускают, что (3.37) справедливо. Тогда отношение к равно


если скорость свободного осаждения капли определяют по формуле Стокса.

Как следует из табл. 3.2, при определенном сочетании общей обводненности эмульсии и диаметров капель, опережающего движения более крупных капель не происходит. Например, для эмульсии обводненностью В=0,7 скорость осаждения капли диаметром 200 мкм всего в 15,5 раза больше скорости осаждения капли диаметром в 3 мкм, т. е. эмульсия не должна расслаиваться до коагуляции капель. Для эмульсии обводненностью B=0,1 опережающее движение более крупных капель происходит практически во всем диапазоне их размеров.

Таблица 3.2 - Относительные скорости стесненного осаждения капель

Отношение скорости стесненного осаждения капель максимального размера к скоростям осаждения капель меньшего размера при следующей общей обводненности эмульсий

Таким образом, из данных табл. 3.2 и кинетики расслоения водонефтяных эмульсий видно, что решающим фактором в механизме расслоения эмульсии при большой обводненности является коагуляция преимущественно наиболее крупных капель и последующее быстрое выпадение их в осадок. В результате обводненность эмульсии уменьшается, вероятность столкновения крупных капель воды снижается и начинает преобладать механизм безкоагуляционного осаждения капель с возможным захватом более мелких частиц. При обводненности эмульсии более 10 % возникают благоприятные условия (увеличение концентрации относительно крупных капель) для коагуляции капель, т. е. уменьшение дисперсности эмульсии в локальном слое. Коагуляция капель облегчается при использовании поверхностно-активных веществ для уменьшения прочности «брони» на каплях и при уменьшении вязкости нефти.

Следовательно, разделение эмульсии можно представить идущим одновременно как бы в двух направлениях:

  • - опережающем оседании крупных капель, переходе их в водную фазу, т. е. уменьшении обводненности верхних слоев эмульсии по отношению к исходной;
  • - увеличении относительных размеров остающихся капель на фоне общего уменьшения их абсолютных размеров.

Таким образом, при расчете гравитационных отстойников разделяемые эмульсии можно классифицировать следующим образом:

  • 1) разбавленная с обводненностью 5 % и меньше, т. е. стесненностью осаждения капель можно пренебрегать;
  • 2) двухслойная, содержащая в верхнем слое разбавленную эмульсию, в нижнем - более концентрированную, характеризующуюся стесненным осаждением;
  • 3) концентрированная, т. е. осаждение капель происходит в стесненных условиях;
  • 4) с изменяющейся дисперсностью, т. е. преобладает коагуляция или диспергирование капель.

Пример 3.6. Исследовать характер зависимости суммарного объема капель воды от их относительного размера, используя экспериментальные данные, представленные в работе (табл. 3.3).

Решение. Для установления возможной корреляционной связи между относительным диаметром капель и суммарным их вкладом в общий объем дисперсной фазы представляют данные табл. 3.3 в виде табл. 3.4. Максимальный диаметр частиц в эмульсиях у скважины и перед газонефтяным сепаратором равен 200 мкм, а после сепаратора и после дожимного насоса - 15 мкм. Нормирование диаметров во всех эмульсиях произведено по максимальному диаметру в эмульсии.

Таким образом, относительный диаметр капель воды в водной эмульсии в промысловой системе сбора равен

Таблица 3.3 - Экспериментальные данные распределения дисперсной фазы водонефтяной эмульсии

Диаметр капель, мкм

Доля объема эмульгированной в виде капель воды в эмульсии в местах отбора проб, %

у скважины

перед сепаратором

после сепаратора

после дожимного

Средневзвешенный радиус капель, мкм

Таблица 3.4 - Связь относительных диаметров капель с их суммарным вкладом в общий дисперсный объем дисперсной фазы

Суммарный относительный объем капель воды (%) в дисперсной фазе определяется по выражению

где Nj - число капель диаметром dj;

n - общее число капель в эмульсии;

Ni - суммарное число капель диаметром di и меньше.

Пример 3.7. Рассчитать необходимую длину зоны отстоя при непрерывной подаче эмульсии в отстойник, если ее обводненность В=0,2, распределение частиц по размерам представлено в примере 3.4, высота слоя эмульсии на выходе - 1,75 м, горизонтальная составляющая скорости эмульсии на входе, вязкость нефти 3мПа с, плотность нефти - 820 кг/м3, плотность воды - 1100 кг/м3.

Решение. Необходимую длину зоны отстоя эмульсии определяют остаточной водонасыщенностью, горизонтальной составляющей скорости движения эмульсии и скоростью расслоения эмульсии.

где - длина зоны отстоя эмульсии, м;

Горизонтальная скорость движения эмульсии на выходе в отстойник, м/с;

Время пребывания эмульсии в отстойнике, с.

Время пребывания эмульсии в отстойнике может быть определено как отношение

где h - высота слоя водонефтяной эмульсии на выходе в отстойник;

Скорость стесненного оседания капель воды диаметром;

Время оседания частиц диаметром, т. е. время прохождения их через слой эмульсии высотой h.

Подставляя (3.53) в (3.52), с учетом (3.46), получают

где - вязкость среды;

Максимальный диаметр капель воды, которые могут содержаться в эмульсии на выходе из отстойника,

Плотность воды и нефти соответственно, кг/м3;

Максимальный диаметр капель воды в эмульсии на выходе в отстойник, м;

Длина зоны отстоя капель воды диаметром более, м.

Пусть =100 мкм, тогда


Если зона отстоя эмульсии - 11,2 м, то осаждаются все капли воды в эмульсии диаметром 100 мкм и более. Следовательно, в эмульсии на выходе могут содержаться только капли воды диаметром меньше 100 мкм. В соответствии с заданным распределением капель воды в эмульсии по размерам на выходе из отстойника с длиной зоны отстоя 11,2 м содержатся капли воды диаметром 100 мкм и меньше.

Обводненность эмульсии на выходе из отстойника может быть рассчитана по (3.45), принимая размеры капель воды, покидающих отстойник в составе эмульсии, 80 мкм и меньше:


Результаты расчетов и Вi-1 для осаждения различных диаметров приведены в Прил. 27.

    Методы разделения гетерогенных систем: осаждение, фильтрование, центрифугирование, мокрое разделение.

    Осаждение представляет собой процесс разделения, при котором взвешенные в жидкости или газе твёрдые и жидкие частицы отделяются от сплошной фазы под действием силы тяжести, центробежной силы, сил инерции, и электрических сил.

    Фильтрование – процесс разделения с помощью пористой перегородки, способной пропускать жидкость или газ, но задерживать

    взвешенные частицы. Движущей силой процесса является разность давлений.

    Мокрая очистка газов – процесс улавливания взвешенных в газе частиц какой-либо жидкостью, под действием сил тяжести или сил инерции и применяется для очистки газов и разделения суспензий.

    ЦЕНТРИФУГИРОВАНИЕ – разделение в поле центробежных сил жидких дисперсных систем с частицами размером более 100 нм. Используют для выделения составляющих фаз (жидкая - фугат или фильтрат, твердая - осадок) из двухкомпонентных (суспензии, эмульсии) и трехкомпонентных (эмульсии, содержащие твердую фазу) систем.

    В практике центрифугирования применяются два способа разделения жидких неоднородных систем: центробежное фильтрование и центробежное осаждение. В первом случае центрифуги изготовляются с перфорированным ротором, на внутренней стенке (обечайке) которого уложена фильтровальная перегородка - фильтрующие центрифуги, во втором - с отстойным ротором, имеющим сплошную обечайку - отстойные центрифуги. Изготовляются также комбинированные отстойно-фильтрующие центрифуги, в которых совмещаются оба принципа разделения.

  1. 2. Факторы, влияющие на величину скорости осаждения частицы.

  2. Скорость ОСАЖДЕНИЯ зависит от физических свойств дисперсной и дисперсионной фаз, концентрации дисперсной фазы, температуры. Скорость ОСАЖДЕНИЕ отдельной сферич. частицы описывается уравением Стокса:

    Woc = /18μc ;

    где Woc – ск-ть свободн.осаждения тв.частицы шарообразн.формы, м/с;

    d – диаметр частицы, м; ρт – плотность твёрдой частицы, кг/м3;

    ρс – плотность среды, кг/м3; μс – динамическая вязкость среды, Па.с.

    Уравнение Стокса применимо лишь к строго ламинарному режиму движения частицы, когда число Рейнольдса Re < 1,6, и не учитывает ортокинетич, коагуляцию, поверхностные явления, влияние изменения концентрации твердой фазы, роль стенок сосуда и др. факторы.

    Для частиц неправильной формы скорость осаждения меньше, и потому скорость, рассчитанную для шарообразной частицы, необходимо умножить на поправочный коэффициент φ, называемый коэффициентом (или фактором) формы.

    W = φ*W oc шар.

    где W – скорость осаждения твердых частиц произвольной формы, м/с;

    φ – коэффициент формы.

    Коэффициенты формы частиц:

    Кубическая, φ = 0,806;

    Продолговатая, φ = 0,58;- круглая, φ = 0,69;

    Пластинчатая, φ = 0,43;- угловатая, φ = 0,66;

  3. 3. Процессы флотации.

  4. Флотацию применяют для удаления из сточных вод нерастворимых диспергированных примесей, которые самопроизвольно плохо отстаиваются. В некоторых случаях флотацию используют и для удаления растворимых веществ (например, ПАВ).

    Различают следующие способы флотационной обработки сточных вод:

    С выделением воздуха из растворов;

    С механическим диспергированием воздуха;

    С подачей воздуха через пористые материалы;

    Электрофлотация;

    Химическая флотация.

    Флотацию с выделением воздуха из растворов применяют для очистки сточных вод, которые содержат очень мелкие частицы загрязнений. Сущность способа заключается в создании пересыщенного раствора воздуха в сточной жидкости. При уменьшении давления из раствора выделяется пузырьки воздуха, которые флотируют загрязнение.

    В зависимости от способа создания пересыщенного раствора воздуха в

    воде различают: - вакуумную; - напорную; - эрлифтную флотацию.

    При вакуумной флотации сточную воду предварительно насыщают воздухом при атмосферном давлении в аэрационной камере, а затем направляют во флотационную камеру, где вакуум-насосом поддерживается разряжение 30 – 40 кПа. Выделившиеся в камере мельчайшие пузырьки выносят часть загрязнений. Процесс флотации длится около 20 минут.

    Достоинствами этого способа являются:

    Образование пузырьков газа и их слипание с частицами, происходящие в спокойной среде;

    Затраты энергии на процесс минимальны.

    Недостатки:

    Незначительная степень насыщения стоков пузырьками газов, поэтому этот способ нельзя применять при высоких концентрациях взвеси частиц, не больше 250 – 300 мг/л);

    Необходимость сооружать герметично закрытые флотаторы и размещать в них скребковые механизмы.

    Напорные установки имеют большее распространение, чем вакуумные, они просты и надежны в эксплуатации. Напорная флотация позволяет очищать сточные воды с концентрацией взвесей до – 5 г/л. Для увеличения степени очистки в воду иногда добавляют коагулянты.

    Процесс осуществляется в две стадии:

    1) насыщение воды воздухом под давлением;

    2) выделение растворенного газа под атмосферным давлением.

    Механическое диспергирование воздуха во флотационных установках обеспечивается турбинками насосного типа – импеллерами, которые представляют собой диск с обращенными вверх лопатками. Такие установки широко используют для очистки сточных вод с высоким содержанием взвешенных частиц (более 2 г/л). При вращении импеллера в жидкости возникает большое число мелких вихревых потоков, которые разбиваются на пузырьки определенной величины. Степень измельчения и эффективность очистки зависит от скорости вращения импеллера: чем больше скорость, тем меньше пузырек и тем больше эффективность процесса.

  5. 4.Ионный обмен

  6. основан на процессе обмена межу ионами, находящимися в растворе, и ионами, присутствующими на поверхности твердой фазы – ионита. Этими методами удается извлекать и утилизироватьценные примеси: соединения мышьяка и фосфора, хром, цинк, свинец, медь, ртуть и другие металлы, а также поверхностно-активные и радиоактивные вещества. Иониты разделяют на катиониты и аниониты. На катионитах происходит обмен катионами, а на анионитах – анионами. Этот обмен можно представить в виде следующей схемы. Катионит: Me+ + H[K] → Me[K] + H+.

    Анионит: SO – 24 + 2[A]OH → [A]2SO4 + 2OH- Особенностью ионитов является обратимый характер ионообменных реакций. Поэтому можно «посаженные» на ионит ионы «снять» обратной реакцией. Для этого катионит промывают раствором кислоты, а анионит – раствором щелочи. Таким способом осуществляют регенерацию ионитов.

    Для ионообменной очистки сточных вод применяют фильтры периодического и непрерывного действия. Фильтр периодического действия представляет собой закрытый цилиндрический резервуар с расположенным у днища щелевым дренажным устройством, обеспечивающим равномерное отведение воды по всему сечению фильтра.

    Высота слоя загрузки ионита 1,5 – 2,5 м. Фильтр может работать по параллельной и по противоточной схеме. В первом случае и сточная вода, и регенерирующий раствор подаются сверху, во втором – сточная вода подается снизу, а регенерирующий раствор – сверху.

    На работу ионообменного фильтра большое влияние оказывает содержание взвешенных частиц в подаваемой сточной воде. Поэтому перед подачей в фильтр воду подвергают механической очистке.

    Разновидностью ионообменного метода очистки сточных вод является электродиализ – это метод разделения ионов под действием электродвижущей силы, создаваемой в растворе по обе стороны разделяющей его мембраны. Процесс разделения проводят в электродиализаторе. Под действием постоянного электрического тока катионы, двигаясь к катоду, проникают через катионитовые мембраны, но задерживаются анионитовыми, а анионы, двигаясь в направлении анода, проходят через анионитовые мембраны, но задерживаются катионитовыми.

    В результате этого из одного ряда камер ионы выводятся в смежный ряд камер. Очищенная от солей вода выпускается по одному коллектору, а концентрированный раствор – по другому.

    Электродиализаторы применяют для удаления растворенных в сточной воде солей. Оптимальная концентрация солей 3 – 8 г/л. Во всех электродиализаторах применяют электроды, изготовленные преимущественно из платинированного титана.

  7. 5. Коагуляция, флокуляция. Область применения.

  8. Коагуляция – это процесс укрупнения дисперсных частиц в результате их взаимодействия и объединения в агрегаты. В очистке сточных вод коагуляцию применяют для ускорения процесса осаждения тонкодисперсных примесей и эмульгированных веществ. Она наиболее эффективна для удаления из воды коллоидно-дисперсных частиц, т.е. частиц размером 1-100 мкм. В процессах очистки сточных вод коагуляция происходит под влиянием добавляемых к ним специальных веществ – коагулянтов. Коагулянты в воде образуют хлопья гидроксидов металлов, которые быстро оседают под действием силы тяжести. Хлопья обладают способностью улавливать коллоидные и взвешенные частицы и агрегировать их. Т.к. коллоидная частица имеет слабый отрицательный заряд, а хлопья коагулянтов – слабый положительный заряд, то между ними возникает взаимное притяжение. В качестве коагулянтов обычно используют соли алюминия, железа или их смесь. Выбор коагулянта зависит от его состава, физико-химических свойств, концентрации примесей в воде и от рН солевого состава воды. В качестве коагулянтов используют сульфат алюминия, гидрохлорид алюминия. Из солей железа в качестве коагулянта используются сульфат железа и хлорид железа, а иногда их смеси.

    Флокуляция – это процесс агрегации взвешенных частиц при добавлении в сточную воду высокомолекулярных соединений – флокулянтов. В отличие от коагулянтов, при флокуляции агрегация происходит не только при непосредственном контакте частиц, но и в результате взаимодействия молекул, адсорбированных на частицах коагулянта. Флокуляцию проводят для интенсификации процесса образования хлопьев гидроксидов алюминия и железа с целью повышения скорости их осаждения. Использование флокулянтов позволяет снизить дозы коагулянтов, уменьшить продолжительность процесса коагуляции и повысить скорость осаждения образовавшихся хлопьев. Для очистки сточных вод используют как природные, так и синтетические флокулянты. К природным относятся крахмал, эфиры, целлюлоза и др. Наиболее активным флокулянтом является диоксид кремния. Из синтетических органических флокулянтов наибольшее применение в нашей стране получил полиакриламид. Механизм действия флокулянтов основан на следующих явлениях: адсорбция молекул флокулянта на поверхности коллоидных частиц, образование сетчатой структуры молекул флокулянта, слипание коллоидных частиц за счёт сил Ван-дер-Ваальса. При действии флокулянтов между коллоидными частицами образуются трёхмерные структуры, способные к более быстрому и полному отделению от жидкой фазы. Причиной возникновения таких структур является адсорбция макромолекул флокулянта на нескольких частицах с образованием между ними полимерных мостиков. Коллоидные частицы заряжены отрицательно, что способствует процессу взаимной коагуляции с гидроксидом алюминия или железа.

  9. 6.Адсорбция. Определение. Область применения

  10. Адсорбция – процесс избирательного поглощения одного или нескольких компонентов из газовой или жидкой смеси поверхностью твердого поглотителя. Газовую или жидкую фазу, в которой находится компонент, подлежащий удалению, называют носителем (газ-носитель или жидкость- носитель). Поглощаемое вещество – адсорбтивом, поглощенное вещество – адсорбатом, а твердое тело (поглотитель) – адсорбентом.

    Адсорбционные методы широко применяют для глубокой очистки сточных вод от растворенных органических веществ после биохимической очистки, а также в локальных установках, если концентрация этих веществ в воде невелика и они биологически не разлагаются или являются сильно токсичными. Применение локальных установок целесообразно, если вещество хорошо адсорбируется при небольшом удельном расходе адсорбента.

    Адсорбцию используют для обезвреживания сточных вод от фенолов, гербицидов, пестицидов, ароматических нитросоединений, ПАВ, красителей и т.д.

    Достоинством метода является высокая эффективность, возможность очистки сточных вод, содержащих несколько веществ, а также рекуперация этих веществ.

  11. 7.АБсорбция. Определение. Область применения

  12. Абсорбцией называют процесс поглощения газов или паров из газовых или парогазовых смесей жидкими поглотителями. Этот процесс является избирательным и обратимым.

    В абсорбционных процессах участвуют две фазы – газовая и жидкая . Газовая фаза состоит из непоглощаемого газа - носителя и одного или нескольких абсорбируемых компонентов. Жидкая фаза представляет собой раствор абсорбируемого (целевого) компонента в жидком поглотителе. При физической абсорбции газ – носитель и жидкий поглотитель инертны по отношению к переходящему компоненту и один по отношению друг к другу.

    Для очистки отходящих газов от диоксида серы предложено много методов, однако на практике нашли применение только некоторые из них. Это связано с тем, что объемы отходящих газов велики, а концентрация в них SO2 мала, газы характеризуются высокой температурой и значительным содержанием пыли. Для абсорбции могут быть использованы вода, водные растворы и суспензии солей щелочных и щелочноземельных металлов.

    В зависимости от особенностей взаимодействия поглотителя и извлекаемого из газовой смеси компонента абсорбционные методы подразделяются на методы, базирующиеся на закономерностях физической абсорбции, и методы абсорбции, сопровождаемой химической реакцией в жидкой фазе (хемосорбция).

  13. 8.Физическая и химическая абсорбция.

  14. При физической абсорбции растворение газа не сопровождается химической реакцией (или, по крайней мере, эта реакция не оказывает заметного влияния на процесс). В данном случае над раствором существует более или менее значительное равновесное давление компонента и поглощение последнего происходит лишь до тех пор, пока его парциальное давление в газовой фазе выше равновесного давления над раствором. Полное извлечение компонента из газа при этом возможно только при противотоке и подаче в абсорбер чистого поглотителя, не содержащего компонента. При физической абсорбции энергия взаимодействия молекул газа и абсорбента в растворе не превышает 20 кДж/моль.

    При хемосорбции (абсорбция, сопровождаемая химической реакцией) абсорбируемый компонент связывается в жидкой фазе в виде химического соединения. При необратимой реакции равновесное давление компонента над раствором ничтожно мало и возможно полное его поглощение. При обратимой реакции над раствором существует заметное давление компонента, хотя и меньшее, чем при физической абсорбции. Молекулы растворенного газа реагируют с активным компонентом абсорбента-хемосорбентом (энергия взаимодействия молекул более 25 кДж/моль) либо в растворе происходит диссоциация или ассоциация молекул газа. Промежуточные варианты абсорбции характеризуются энергией взаимодействия молекул 20-30 кДж/моль. К таким процессам относится растворение с образованием водородной связи, в частности абсорбция ацетилена диметилформамидом.

  15. 9.Очистка сточных вод экстракцией.

  16. Жидкостную экстракцию применяют для очистки сточных вод, содержащих фенолы, масла, органические кислоты, ионы металлов и др.

    Целесообразность использования экстракции для очистки сточных вод определяется концентрацией органических примесей в них.

    Очистка сточных вод экстракцией состоит из трех стадий.

    1стадия – интенсивное смешение сточной воды с экстрагентом (органическим растворителем). В условиях развитой поверхности контакта между жидкостями образуются две жидкие фазы. Одна фаза – экстракт содержит извлекаемое вещество и экстрагент, другая – рафинат – сточную воду и экстрагент.

    2 с – разделение экстракта и рафината; 3- регенерация экстрагента из экстракта и рафината.

    Чтобы снизить содержание растворенных примесей до концентраций, ниже предельно допустимых, необходимо правильно выбрать экстрагент и скорость его подачи в сточную воду. При выборе растворителя следует учитывать его селективность, физ-хим свойства, стоимость и возможные способы регенерации.

    Необходимость извлечения экстрагента из экстракта связана с тем, что его надо вновь вернуть в процесс экстракции. Регенерация может быть проведена с применением вторичной экстракции с другим растворителем, а также выпариванием, дистилляцией, химическим взаимодействием или осаждением. Не проводить регенерацию экстрагента в случае, если нет необходимости возвращать его в цикл.

  17. 10. Процессы электрохимического окисления и восстановления.

  18. Для очистки сточных вод от различных растворимых и диспергированных примесей применяют процессы анодного окисления и катодного восстановления, электрокоагуляции, электрофлокуляции и электродиализа. Все эти процессы протекают на электродах при пропускании через сточную воду постоянного электрического тока. Электрохимические методы позволяют извлекать из сточных вод ценные продукты при относительно простой автоматизированной технологической схеме очистки, без использования химических реагентов. Основным недостатком этих методов является большой расход электроэнергии.

    Очистку сточных вод электрохимическими методами можно проводить периодически или непрерывно.

  19. 11.Процессы электрокоагуляции, электрофлотации, электродиализа

  20. Электрокоагуляция. При прохождении сточной воды через межэлектродное пространство электролизера происходит электролиз поды, поляризация частиц, электрофорез, окислительно-восстановительные процессы, взаимодействие продуктов электролиза друг с другом. При использовании нерастворимых электродов коагуляция может происходить в результате электрофоретических явлений и разряда заряженных частиц на электродах, образования в растворе веществ (хлор, кислород), разрушающих сольватные соли па поверхности частиц. Такой процесс можно использовать для очистки вод при невысоком содержании коллоидных частиц и низкой устойчивости загрязнений. Для очистки промышленных сточных вод, содержащих высоко устойчивые загрязнения, проводят электролиз с использованием растворимых стальных или алюминиевых анодов. Под действием тока происходит растворение металла, в результате чего в воду переходят катионы железа или алюминия, которые, встречаясь с гидроксидными группами, образуют гидроксиды металлов в виде хлопьев. Наступает интенсивная коагуляция.

    Достоинства метода электрокоагуляции: компактность установок и простота управления, отсутствие потребности в реагентах, малая чувствительность к изменениям условий проведения процесса очистки (температура, рН среды, присутствие токсичных веществ), получение шлама с хорошими структурно-механическими свойствами. Недостатком метода является повышенный расход металла и электроэнергии. Электрокоагуляция находит применение в пищевой, химической и целлюлозно-бумажной промышленности.

    Электрофлотация. В этом процессе очистка сточных вод от взвешенных частиц происходит при помощи пузырьков газа, образующихся при электролизе воды. На аноде возникают пузырьки кислорода, а на катоде – водорода. Поднимаясь в сточной воде, эти пузырьки флотируют взвешенные частицы. При использовании растворимых электродов происходит образование хлопьев коагулянтов и пузырьков газа, что способствует более эффективной флотации.

    Электродиализ – это метод разделения ионов под действием электродвижущей силы, создаваемой в растворе по обе стороны разделяющей его мембраны. Процесс разделения проводят в электродиализаторе. Под действием постоянного электрического тока катионы, двигаясь к катоду, проникают через катионитовые мембраны, но задерживаются анионитовыми, а анионы, двигаясь в направлении анода, проходят через анионитовые мембраны, но задерживаются катионитовыми. В результате этого из одного ряда камер ионы выводятся в смежный ряд камер.

  21. 12.Мембранные процессы

  22. Обратным осмосом и ультрафильтрацией называют процессы фильтрования растворов через полупроницаемые мембраны под давлением, превышающим осмотическое давление. Мембраны пропускают молекулы растворителя, задерживая растворенные вещества. При обратном осмосе отделяются частицы (молекулы, гидратированные ионы), размеры которых не превышают размеров молекул растворителя. При ультрафильтрации размер отдельных частиц d ч на порядок больше.

    Обратный осмос, схема которого приведена на широко используется для обессоливания воды в системах водоподготовки ТЭЦ и предприятий различных отраслей промышленности (полупроводников, кинескопов, медикаментов и др.); в последние годы начинает применяться для очистки некоторых промышленных и городских сточных вод.

    Простейшая установка обратного осмоса состоит из насоса высокого давления и модуля (мембранного элемента), соединенных последовательно.

    Эффективность процесса зависит от свойств применяемых мембран. Они должны обладать следующими достоинствами: высокой разделяющей способностью (селективностью), большой удельной производительностью (проницаемостью), устойчивостью к действию среды, неизменностью характеристик в процессе эксплуатации, достаточной механической прочностью, низкой стоимостью.

    Для ультрафильтрации предложен другой механизм разделения. Растворенные вещества задерживаются на мембране потому, что размер молекул их больше, чем размер пор, или вследствие трения молекул о стенки пор мембраны. В действительности в процессе обратного осмоса и ультрафильтрации имеют место более сложные явления.

    Процесс мембранного разделения зависит от давления, гидродинамических условий и конструкции аппарата, природы и концентрации сточных вод, содержания в них примесей, а также от температуры. Увеличение концентрации раствора приводит к росту осмотического давления растворителя, повышению вязкости раствора и росту концентрационной поляризации, то есть к снижению проницаемости и селективности. Природа растворенного вещества оказывает влияние на селективность. При одинаковой молекулярной массе неорганические вещества задерживаются на мембране лучше, чем органические.

  23. 13.Рассеивание вредных веществ в атмосфере.

  24. Для того чтобы концентрация вредного вещества в приземном слое атмосферы не превышала предельно допустимую максимальную разовую концентрацию, пылегазовые выбросы подвергаются рассеиванию в атмосфере через высотные трубы. Распространение в атмосфере выбрасываемых из труб промышленных выбросов подчиняется законам турбулентной диффузии. На процесс рассеивания выбросов существенное влияние оказывают состояние атмосферы, расположение предприятий, характер местности, физические свойства выбросов, высота трубы, диаметр устья и др. Горизонтальное перемещение примесей определяется в основном скоростью ветра, а вертикальное - распределением температур в вертикальном направлении.

    По мере удаления от трубы в направлении распространения промышленных выбросов концентрация вредностей в приземном слое атмосферы сначала нарастает, достигает максимума и затем медленно убывает, что позволяет говорить о наличии трех зон неодинакового загрязнения атмосферы: зона переброса факела выбросов, характеризующаяся относительно невысоким содержанием вредных веществ в приземном слое атмосферы; зона задымления - зона максимального содержания вредных веществ и зона постепенного снижения уровня загрязнения.

    Согласно действующей методике минимальная высота Н min одноствольной трубы для рассеивания газовоздушных выбросов, имеющих температуру выше температуры окружающего воздуха, определяется по формуле

    H min =√AMk F mn/ПДК 3 √1/QΔT,

    где А - коэффициент, зависящий от температурного градиента атмосферы и определяющий условия вертикального и горизонтального рассеивания вредностей. В зависимости от метеорологических условий для субтропической зоны Средней Азии A=240; для Казахстана, Нижнего Поволжья, Кавказа, Молдавии, Сибири, Дальнего Востока и остальных районов Средней Азии - 200; Севера и Северо-Запада европейской территории СССР, Среднего Поволжья, Урала и Украины - 160; Центральной части европейской территории СССР - 120;

    М - количество вредного вещества, выбрасываемого в атмосферу, г/с;

    Q - объемный расход газовоздушной смеси, выбрасываемой из всех труб, м 3 /с;

    k F - коэффициент, учитывающий скорость оседания взвешенных частиц выброса в атмосфере. Для газов k F =1, для пыли при эффективности очистки газоочистной установки более 0,90-2,5 и менее 0,75-3;

    ΔT - разность температур выбрасываемой газовоздушной смеси и окружающего атмосферного воздуха. Температуру окружающего воздуха принимают по средней температуре самого жаркого месяца в 13 часов;

    m и п - безразмерные коэффициенты, учитывающие условия выхода газовоздушной смеси из устья источника выброса.

Твердая частичка или жидкая капелька, движущаяся под действием силы тяжести сквозь вязкую жидкость, в конечном счете приобретает постоянную скорость. Она называется скоростью осаждения. Если плотность частицы ниже, чем плотность жидкости, она будет двигаться вверх со скоростью всплытия. Эти скорости обозначаются буквами vg (g – сила тяжести). Величина скорости осаждения/всплытия определяется следующими физическими параметрами:

диаметром частицы d, м

плотностью частицы ρp, кг/м3

плотностью непрерывной фазы, ρl, кг/м3

вязкостью непрерывной фазы η, кг/м,с

ускорением силы тяжести g = 9,81 м/с2.

Если известны значения всех вышеперечисленных параметров, то можно рассчитать скорость осаждения/всплытия частицы или капли при помощи следующей формулы, выведенной из закона Стокса (формула 1):

Подставляем эти значения в формулу получим:

Как видим из полученного результата, жировые шарики поднимаются очень медленно. На практике шарики жира образуют крупные скопления и их всплытие происходит гораздо быстрее.

Периодическое сепарирование под действием силы тяжести

Рисунок 1

В сосуде А, показанном на рис. 1, содержится жидкость, в которой во взвешенном состоянии находятся твердые частицы одинаковых размеров и более плотные, чем жидкость. Для того чтобы находящиеся на поверхности жидкости частицы опустились на дно, должно пройти довольно много времени.

Время осаждения может быть сокращено при условии сокращения этой дистанции. Высоту сосуда (В) уменьшили, а площадь увеличили с тем, чтобы объем остался неизменным. Дистанция осаждения (h2) уменьшилась до 1/5 от первого варианта (h), и время, требуемое для полного разделения фракций, так же сократилось до 1\5 (рисунок 2).

Рисунок 2

Непрерывное сепарирование под действием силы тяжести

Простейший сосуд, в котором может осуществляться непрерывное отделение частичек разного диаметра от жидкости, показан на рис. 3. Жидкость, содержащая частички в виде шлама, поступает в сосуд с одного его конца и движется в направлении выхода на другом конце под определенным напором. При движении частички оседают с различной скоростью в зависимости от их диаметров.



Рисунок 3

При непрерывном отделении взвеси от жидкости в сосуде с горизонтальными экранами осадительные каналы будут постоянно забиваться собирающимися в них частицами. В конце концов процесс остановится. В сосуде с наклонными экранами, показанном на рис. 4, частицы, оседающие на экранах, соскальзывают под действием силы тяжести с экранов и скапливаются на дне сосуда.

Рисунок 4

Почему частицы, оседающие на экранах, не захватываются жидкостью, текущей вверх между экранами? Объяснение дано на рис. 5, на котором

показан разрез части осадительного канала. Когда жидкость течет между экранами, ее пограничный слой, ближайший к экранам, тормозится трением, и поэтому скорость его падает до нуля. Стационарный пограничный слой оказывает тормозящее воздействие на соседний слой, и так далее в направлении к центру канала, где скорость максимальная.

Рисунок 5

Получается профиль скоростей, как показано на рисунке 5, – ламинарный поток в канале. Частицы, осевшие в стационарной пограничной зоне, таким образом, находятся под воздействием только силы тяжести.

Поверхность для осаждения, используемая при прохождении через сосуд с наклонными вставками максимального потока, должна быть предварительно рассчитана. Для полного использования пропускной способности разделительного сосуда необходимо предоставить оседающим частицам как можно большую поверхность. Расстояние, в пределах которого происходит осаждение, не оказывает непосредственного влияния на пропускную способность сосуда, но какую-то минимальную ширину канала необходимо выдерживать, чтобы не допустить забивания каналов оседающими частицами.

Формула скорости оседания частицы в жидкости: где v - скорость оседания, g - ускорение силы тяжести, r - радиус частицы, ρ" - плотность вещества частицы, ρ - плотность жидкости, μ - коэф. вязкости жидкости. Коэф. К зависит от формы частицы и приблизительно равен 0,222 для шаров, 0,143 для дисков и 0,040 для чешуек.

  • - , закон, определяющий силу сопротивления F, испытываемую тв. шаром при его медленном поступат. движении в неогранич. вязкой жидкости: F=6pmirv, где m - коэфф. динамич...

    Физическая энциклопедия

  • - параметры, используемые для описания состоянияполяризации эл.-магн. волн. Введены Дж. Г. Стоксом в 1852. Идеальная плоская монохроматич. волна в общем случае поляризована эллиптически...

    Физическая энциклопедия

  • - связывающая скорость падения в жидкости твердой сферической частицы с ее размерами, ее плотностью. а также плотностью и вязкостью жидкости: ...

    Толковый словарь по почвоведению

  • - в механике текучих сред - формула, задающая предельную скорость, с которой твердые частицы осаждаются в текучей среде...

    Научно-технический энциклопедический словарь

  • - I Сто́кса воротни́к отек шеи, а нередко также головы и верхних конечностей, возникающий в результате сдавления верхней полой вены. Если сдавлена только правая или левая плечеголовная вена, то отек выражен...

    Медицинская энциклопедия

  • - отек шеи, а иногда и лица, рук, верхней части груди и области лопаток, сопровождающийся набуханием кожных вен...

    Большой медицинский словарь

  • - полная атриовентрикулярная сердечная блокада - ред.; приступы временной потери сознания, развивающиеся в результате прекращения кровотока во время желудочковой фибрилляции или асистолы...

    Медицинские термины

  • - Stokes, 1851, - определяющий силу сопротивления, испытываемую твердым шаром при медленном движении в неограниченно вязкой жидкости: ||F = 6p m ru , где F - сила сопротивления, m...

    Геологическая энциклопедия

  • - см. Закон Стокса...

    Геологическая энциклопедия

  • - формула, имеющая вид: где a1, А2,..., Ап - несовместимые события, Общая схема применения Ф. в. г.: если событие В может происходить в разл. условиях, относительно которых сделано п гипотез А1, А2, .....

    Геологическая энциклопедия

  • - формула скорости оседания частицы в жидкости: где v - скорость оседания, g - ускорение силы тяжести, r - радиус частицы, ρ" - плотность вещества частицы, ρ - плотность жидкости, μ...

    Геологическая энциклопедия

  • - закон гидродинамики, определяющий силу сопротивления, к-рая действует на твёрдый шар при его медленном постулат, движении в неогранич. вязкой жидкости. Согласно С. з. сила сопротивления F =6ПИnrv, где n - динамич...

    Большой энциклопедический политехнический словарь

  • - закон, определяющий силу сопротивления F, испытываемую твёрдым шаром при его медленном поступательном движении в неограниченной вязкой жидкости: , где μ - коэффициент вязкости жидкости, r - радиус шара и υ -...
  • - формула преобразования криволинейного интеграла по замкнутому контуру L в поверхностный интеграл по поверхности Σ, ограниченной контуром L. С. ф. имеет вид: , причём...

    Большая Советская энциклопедия

  • - : сила сопротивления - испытываемая твердым шаром при его медленном поступательном движении в неограниченно вязкой жидкости, F=6pmru, где r - радиус шара, m - коэффициент вязкости жидкости, u - скорость движения шара....
  • - СТОКСА формула - формула, связывающая криволинейный интеграл по замкнутому контуру с поверхностным интегралом по поверхности, ограниченной этим контуром. Предложена Дж. Г. Стоксом в 1854...

    Большой энциклопедический словарь

"ФОРМУЛА СТОКСА" в книгах

ДЫХАНИЕ ЧЕЙН-СТОКСА

Из книги Скуки не было. Первая книга воспоминаний автора Сарнов Бенедикт Михайлович

ДЫХАНИЕ ЧЕЙН-СТОКСА О Сталине я в жизни думал разное. Борис Слуцкий 1Смысл странноватого названия этой главы поймут не все. Но многие из тех, для кого 5 марта 1953 года стало важной вехой в их жизни, сразу сообразят, в чем тут дело.А для меня за этими словами встает еще и такая

Из книги Максвелл автора Карцев Владимир Петрович

ЛЕКЦИИ СТОКСА, СЕМИНАРЫ ГОПКИНСА, СОВЕТЫ ОТЦА К первым кембриджским годам относится и сближение Максвелла с другом Вильяма Томсона Джорджем Габриэлем Стоксом, профессором в Кембридже, который был старше Джеймса на двенадцать лет. Стокс был лукасианским профессором

Его формула

Из книги Изнанка экрана автора Марягин Леонид

Его формула Незадолго до смерти Довженко мечтал уйти с «Мосфильма» и образовать свою студию. Я, юный, влюбленный в мосфильмовский гигант, был ошарашен.- Чем вам не нравится «Мосфильм»? - робко спросил я у Александра Петровича.И получил многозначительный ответ:- На

Формула

Из книги Размышления о личном развитии автора Адизес Ицхак Калдерон

Формула В моем понимании, формула, правящая миром, – не что иное, как абсолютная, чистая любовь (или, другими словами, полная интеграция). А интеграция является функцией взаимного уважения и доверия.Итак, где же был Бог во время Холокоста? Формула объясняет, что произошло:

Формула

Из книги Освободитесь от плохих долгов автора Кийосаки Роберт Тору

Формула Вы сделали первые четыре шага и теперь готовы перейти к формуле ликвидации плохих долгов. Шаги с 5-го по 10-й приведут вас к конкретной формуле, которую мы с Робертом использовали для того, чтобы избавиться от всех тех долгов, которые висели на нас неподъемным

Формула

автора Диксон Питер Р.

Формула Безубыточный объем (БО) - это объем продаж, необходимый при цене продажи р, который создает прибыль, равную расчетным постоянным издержкам. При безубыточном объеме все постоянные и переменные издержки покрываются.Безубыточная продажа = БО = ПИ/МД=ПИ/(Ц-

Формула

Из книги Управление маркетингом автора Диксон Питер Р.

Формула Специалисту, занимающемуся маркетинговым планированием для точной регуляции цены требуется знание двух формул.Снижение цены способствует увеличению валовой прибыли в том случае, если%?Оn > [(%?Ц) / % ТП - %?Ц)] х 100%,где %?Оn - процент увеличения объема продаж;%?Ц -

Формула ОДП

Из книги Инфобизнес на полную мощность [Удвоение продаж] автора Парабеллум Андрей Алексеевич

Формула ОДП Первый промокает можно запустить уже сегодня и повторять его каждую неделю. Запись не нужно пускать в открытый доступ. Промокает должен быть немного обучающим, но в первую очередь – активно продающим тренинг.Как строить продажную презентацию? Вспомните

Формула

Из книги Курс русской истории (Лекции I-XXXII) автора Ключевский Василий Осипович

Формула Таким образом, удельный порядок держался на двух основаниях, на географическом и на политическом: он создан был совместным действием природы страны и её колонизации. 1) При содействии физических особенностей Верхневолжской Руси колонизация выводила здесь мелкие

Из книги Жизнь – игра. Правила победителей автора Зюзгинов Александр

Формула пути – формула жизни Жизнь – это путешествие в самый неизвестный уголок во всем мире – Себя. Никто не знает своих границ. И я уверен, что их нет совсем. Я не знаю, что я возьму с собой по дороге, от чего откажусь, что не замечу, о чем буду плакать, смеяться, сожалеть. Я

mob_info